Density functional theory investigation of electrophilic addition reaction of bromine to tricyclo $\left[4.2 .2 .2^{2,5}\right]$ dodeca-1,5diene ${ }^{1}$

Rza Abbasoglu

Received: 16 September 2008 / Accepted: 27 October 2008 / Published online: 10 December 2008
(C) Springer-Verlag 2008

Abstract

The geometry and the electronic structure of tricyclo[4.2.2.2 ${ }^{2,5}$]dodeca-1,5-diene (TCDD) molecule were investigated by DFT/B3LYP and /B3PW91 methods using the $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets. The double bonds of TCDD molecule are syn-pyramidalized. The structure of π-orbitals and their mutual interactions for TCDD molecule were investigated. Potential energy surface (PES) of the TCDD- Br_{2} system was studied by B3LYP/6$311++G(d, p)$ method and the configurations [molecular charge-transfer (CT) complex, transition states (TS1 and TS2), intermediate (INT) and product (P)] corresponding to the stationary points (minima or saddle points) were determined. Initially, a molecular CT-complex forms between Br_{2} and TCDD. With a barrier of $22.336 \mathrm{kcal} \mathrm{mol}^{-1}$ the CT-complex can be activated to an intermediate (INT) with energy $15.154 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than that of the CTcomplex. The intermediate (INT) then transforms easily (barrier $5.442 \mathrm{kcal} \mathrm{mol}^{-1}$) into the final, N-type product. The total bromination is slightly exothermic. Accompanying the breaking of $\mathrm{Br}-\mathrm{Br}$ bond, $\mathrm{C} 1-\mathrm{Br}, \mathrm{C} 5-\mathrm{Br}$ and $\mathrm{C} 2-$ C 6 bonds are formed, and $\mathrm{C} 1=\mathrm{C} 2$ and $\mathrm{C} 5=\mathrm{C} 6$ double bonds transform into single bonds. The direction of the reaction is determined by the direction of intramolecular skeletal rearrangement that is realized by the formation of C2-C6 bond.

[^0]Keywords DFT calculations • Intrinsic reaction coordinate $\cdot \pi-\pi$ interactions • Pyramidalization . Transannular reactions • Tricyclo [4.2.2.2 ${ }^{2,5}$]dodeca-1,5-diene

Introduction

Attack of an electrophile on an unsaturated strained molecule having two isolated double bonds in spatial proximity usually leads to transannular bridge formation, for which two formal possibilities, cross (N-type) and paralel (U-type), exist [1-4]. Experimental results on this type of reaction have been confusing. In some cases only the cross or the paralel bridged product is isolated, while in other cases both products are formed simultaneously [5-20]. Inagaki et al. advanced a perturbation theory to interpret those cases where preferential cross bridging takes place [21]. While the orbital mixing effect must certainly be working when cross bridging occurs, a general theory must explain why and to what extent parallel addition takes place in other systems. The course of reaction has been rationalized by Osawa et al. with the aid of the empirical force field calculations to depend on the thermodynamic stability of the products [1]. A difference larger than $10 \mathrm{kcal} / \mathrm{mol}$ in calculated strain energies between neutral hydrocarbon skeletons of N-type and U-type adducts would dictate the exclusive formation of the more stable product [1].

In order to learn the details of the structure and energy changes that are realized during the course of the reactions in question, it is crucial to evaluate the potential energy surface (PES) of the reaction. Hence, this allows the inner mechanism and dynamic stereochemistry of the reaction to be understood in detail. What's more, the determination of the structures and energies of the configurations (molecular
charge-transfer complexes, transition states, intermediates and products) corresponding to the stationary points (minima or saddle points) by studying the PES of the reaction, is important in order to enlighten the inner mechanism and dynamic stereochemistry of the reaction.

The alkene's structure and nature play a vital role for the electrophilic addition reactions of the halogens into the face-to-face (juxtaposed) double bonded strained alkenes where they show characteristic features. The investigation of the geometric and electronic structure of alkenes are important for the pyramidalization of double bonds, the calculation of the other geometric parameters and the understanding of the mutual interaction of π-orbitals. These investigations are also important for the determination of the connections between the structure of the alkenes and their behaviours in electrophilic addition reactions. The study of the stability and stereochemistry of the different configurations of the reaction products is vital so as to interpret the many features of the electrophilic addition reactions.

The addition reactions of halogens to unsaturated strained molecule and the reaction intermediates have been quantum chemically investigated [22-37]. In this connection, the theoretical investigations of the addition of bromine and chlorine to olefins with rigid structure have recently been reported by us [38-45]. In continuance of our interest in the quantum-chemical studies related to the addition of halogens to unsaturated strained molecules, we wish to report here the results obtained from the investigation of the mechanism and stereochemistry of addition reaction of bromine tricyclo[4.2.2.2 $2^{2,5}$]dodeca-1,5-diene (TCDD). Bromination of the TCDD molecule gives only the adduct of N-type (1,5-addition product)(Scheme 1) [9-11]. However, the formation of U-type (1,6-addition product) adduct cannot be observed.

In this study, the potential energy surface (PES) of the TCDD- Br_{2} system was investigated by DFT method and hence the structure and energies of the configurations (molecular charge-transfer complex (TCDD... Br_{2}), transition states (TS1 and TS2), intermediate and product) corresponding to the stationary points (minima or saddle points) were determined and the mechanism of the addition reaction was discussed. The electronic and geometric
structures of TCDD molecule were investigated by DFT methods and the mutual interaction of the π-orbitals were evaluated.

Methodology

The geometry and the electronic structure of the tricyclo [4.2.2.2 ${ }^{2,5}$]dodeca-1,5-diene (TCDD) molecule have been investigated by using the DFT (density functional theory) method at the B3LYP (Becke 3-parameter hybrid exchange with Lee-Yang-Parr correlation) [46, 47] and B3PW91 (Becke three-parameter hybrid exchange with PerdewWang 1991 gradient corrected correlation) [47, 48] levels with the $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ [49] basis sets. The configurations (molecular charge-transfer complex, transition states, intermediate and product) corresponding to the stationary points (minima or saddle points) of potential energy surface of the addition reaction have been investigated using the B3LYP/6-311++G(d,p) method. All stationary points have been characterized by calculating the vibrational frequencies and zero point vibrational energies have been added for all species. The reactants, molecular charge-transfer complex and intermediate were characterized by all the real frequencies. The transition state has only one imaginary frequency. Connections of the transition states between two local minima have been confirmed by intrinsic reaction coordinate (IRC) [50-52] calculations at the B3LYP/6-311++G(d,p) level. The intrinsic reaction coordinates were followed to verify the energy profiles connecting each transition state to the correct local minima. The calculations have been performed with Gaussian 03 and HyperChem 8 program with an IBM PC Pentium IV computer.

Results and discussion

Full geometric optimization of the TCDD molecule was performed at the DFT/B3LYP and /B3PW91 levels with the $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets and the structure of the molecule was also investigated in detail. The pyramidalization parameters [53-56] were determined with

Scheme 1 The electrophilic addition reaction of bromine to TCDD

the aim of determining the structural deformation of the double bond. The values of the pyramidalization angle (φ), the angle between $\mathrm{C} 1-\mathrm{C} 2$ vector and C 3 C 2 C 11 plane [53, $56]$ and of the out-of-plane bending angle (ψ) (out-of-plane angle between the planes C 3 C 2 C 1 C 8 and C 9 C 1 C 2 C 11 or ψ which is defined as $\psi=180^{\circ}-|\mathrm{D}|, \mathrm{D}$ is the dihedral angle C3C2C1C9 as shown in Scheme 1) [54-56] were calculated according to the results of each method. The distance $\left(\mathrm{R}_{\mathrm{u}}\right)$ (distance between midpoint of opposing $>\mathrm{C}=\mathrm{C}$ double bonds), the other geometric parameters and the energies of the two highest occupied (HOMO and HOMO1) MOs of TCDD molecule were calculated. These results are given in Table 1. The results showed that the double bonds of TCDD molecule are syn-pyramidalized. An X-ray structure of TCDD molecule showed $\mathrm{C}=\mathrm{C}$ double bond lengths of $1.35 \AA$, a pyramidalization angles φ and ψ, respectively, of 27.3° and 35.6° and a separation two double bonds of $2.395 \AA$ [12]. It is evident that, the methods used for the calculation of geometric parameters of the molecule gave similar results to the results obtained by X-ray.

The structure of the π-orbitals of the TCDD molecule and their mutual interactions were investigated. The double bonds of TCDD molecule are constrained to interact through-space and they may also be important for through-bond interactions. The molecules for whom the distance $\left(R_{u}\right)$ between its double bonds is less than $3 \AA$, the interaction of the π-orbitals is efficient through space, hence for the TCDD molecule, there must be strong through-space interaction between its double bonds [57, 58]. On the other hand, for the TCDD molecule, the interaction between the π-orbital of the highly pyramidalized double bond and the σ-orbital of the four allyl group is also strong hence the through-bond interaction among the π-orbitals is strong. For the TCDD molecule, whose double bonds were separated by an odd number of $(m=3) \sigma$ bonds, the mutual interaction of the π-orbitals through-space and through the three σ bonds weakens each other and the splitting of the energy levels of the orbitals becomes less [57, 58]. The splitting of the energy levels $\left(\Delta \varepsilon=\varepsilon_{\text {номо }}\right.$ $\varepsilon_{\text {HOMO-1 }}$), which is a measure of the mutual interaction of
the orbitals, were calculated and are given in Table 1. The small value of $\Delta \varepsilon$ implies that for the TCDD molecule, the through-space and through-bond interaction of the π orbitals are equal and opposite to each other. The HOMO and HOMO-1 of TCDD consists of the out of phase combination of, respectively, the a_{g} skeletal orbital and π^{+} (in-phase) and the $\mathrm{b}_{1 \mathrm{u}}$ skeletal orbital and π^{-}(out-ofphase)(Fig. 1). It must be noted that the short transannular distance between the π bonds (the transannular interaction of the π-orbitals), leads to high pyramidalization of the double bond and a rise in the chemical activity of the considerable strain molecule [57-59].

The optimized structures at the B3LYP/6-311++G (d,p) level for the TCDD molecule and all stationary points (TCDD... Br_{2} molecular CT-complex, transition states (TS1 and TS2) intermediate (INT) and product (P) are given in Scheme 2. Selected structural parameters (bond lengths) are listed in Table 2. The total energies ($\mathrm{E}_{\text {tot }}$) and relative energies $\left(E_{r}\right)$ at B3LYP/6-311++G(d,p) level for all the involved stationary points are summarized in Table 3. The potential energy surface (PES) for the TCDD $+\mathrm{Br}_{2}$ electrophilic addition reaction is illustrated in Fig. 2.

As known, olefin-halogen molecular CT-complexes are formed in the first step of electrophilic addition of halogens to olefins [24-26, 28-30, 32, 34, 35]. The addition reaction of bromine to TCDD starts with the exothermic formation of reactive, essential $1: 1 \mathrm{TCDD} \ldots \mathrm{Br}_{2}$ complex, which is lower in energy than the reagents. The TCDD... Br_{2} molecular CT-complex formed by the approach of a Br_{2} molecule to the double bond in the axial position (Scheme 2). The molecular CT-complex (TCDD... Br_{2}) is of $\mathbf{C}_{\mathbf{2 v}}$ symmetry. The stabilization energy of the complex is $10.222 \mathrm{kcal} \mathrm{mol}^{-1}$ (Fig. 2) and the equilibrium distance $\mathrm{R}_{\mathrm{X}-\mathrm{Br}}$ (X is the midpoint of the $\mathrm{C}=\mathrm{C}$ bond of TCDD) is $2.567 \AA$ (Scheme 2). The bond length of the bromine atoms $\left(\mathrm{R}_{\mathrm{Br}-\mathrm{Br}}=2.487 \AA\right)$ in the molecular complex is longer than that of the işolated Br_{2} molecule ($2.332 \AA$). The bromine molecule in the TCDD... Br_{2} complex is partially polarized. The bromine atom near the double bond has a partial positive charge $(+0.031 \mathrm{e})$ and the other one has a partial negative charge (-0.153 e). The results obtained for the

Table 1 The calculated bond lengths (\AA), distance (\AA) between two double bonds, pyramidalization parameters (degrees) and energies (eV) of the two highest occupied (HOMO and HOMO-1) MOs of TCDD molecule

Metod	$\mathrm{r}_{\mathrm{C}=\mathrm{C}}$	R_{u}	φ	ψ	$\varepsilon_{\text {номо }}$	$\varepsilon_{\text {номо-1 }}$	$\Delta \varepsilon^{\mathrm{a}}$
B3LYP/6-311G(d,p)	1.350	2.411	27.306	35.981	-6.095	-6.150	0.035
B3LYP/6-311++G(d,p)	1.351	2.410	27.272	35.917	-6.177	-6.259	0.082
B3PW91/6-311G(d,p)	1.349	2.394	27.225	35.763	-6.068	-6.177	0.109
B3PW91/6-311++G(d,p)	1.350	2.393	27.272	35.715	-6.123	-6.231	0.108

[^1]

HOMO

HOMO-1

Fig. 1 Electron distribution of the two highest occupied molecular orbitals (HOMO and HOMO-1) of the TCDD molecule (B3LYP/6$311++\mathrm{G}(\mathrm{d}, \mathrm{p})$)
stability and geometric parameters of the TCDD... Br_{2} complex shows that the π interaction between Br_{2} and the highly pyramidalized double bond of the TCDD molecule is strong.

The second step of the reaction takes place over the transformation of CT-complex (TCDD... Br_{2}) into intermediate (INT) over TS1. According to the calculation of the IRC of TS1 and the further optimization calculation of the IRC results, TS1 connects CT-complex (TCDD... Br_{2}) and intermediate (INT). In this step, the $\mathrm{C} 1-\mathrm{Br}$ bond forms, the $\mathrm{Br}-\mathrm{Br}$ bond breaks, the $\mathrm{C} 2-\mathrm{C} 6$ distance shortens, and $\mathrm{C} 1=$ C 2 double bond transforms into single bond. As the system is activated to transition states TS1, considerable structural
change occurs. First, when the bromine approaches to double bond, $\mathrm{R}_{\mathrm{C} 1-\mathrm{Br}}$ is shortened from 2.568 to $2.090 \AA$, where $\mathrm{R}_{\mathrm{Br}-\mathrm{Br}}$ is lengthened from 2.487 to $3.897 \AA$, indicating that the partial $\mathrm{C} 1-\mathrm{Br}$ bond formation and $\mathrm{Br}-$ Br bond breaking happen in a concerted way. For TS1, the bromine atom in the three-membered ring has positive charge (+0.134), the other bromine atom has negative charge (-0.763 e). Second, the C2-C6 distance is shortened from 2.754 to $2.682 \AA$ and the $\mathrm{C} 1-\mathrm{C} 2$ bond distance is lengthened from 1.379 to $1.478 \AA$, indicating that the $\mathrm{C} 1-$ C2 bond partly transforms from double bond to single bond. These results imply that at the same time, the interaction in the system transforms from π character into σ character. It should be emphasized that the structure of TS1 is similar to the structure of the bridged bromonium cation.

To activate CT-complex to TS1, $22.336 \mathrm{kcal} \mathrm{mol}^{-1}$ are required. Over this barrier, the system goes to the intermediate (INT). The energy of INT is 15.154 kcal mol^{-1} relative to CT-complex. The transformation of the TS1 to INT involves the shortening of the C2-C6 distance from 2.682 to $2.435 \AA$, the increase in C1-C2 bond length from 1.478 to $1.505 \AA$ and the lengthening of the $\mathrm{Br}-\mathrm{Br}$ distance from 3.897 to $5.912 \AA$. For INT, the C1-C2 bond is single and the positive charge $(+0.117 \mathrm{e})$ is localized over C 2 atom. As the transannular interaction between the C2 cation centre and $\mathrm{C} 5=\mathrm{C} 6$ double bond increases, for INT,

Scheme 2 Optimized geometries of reactant (TCDD), charge-transfer complex (TCDD... Br_{2}), transition states (TS1 and TS2), intermediate (INT) and product (P) at B3LYP/6311++G(d,p) level. Bond lengths are in Å. Point group in paranthesis

Table 2 Selected structural parameters of the TCDD- Br_{2} stationary points ${ }^{\mathrm{a}}$

Geometry	TCDD $+\mathrm{Br}_{2}$	TCDD $\ldots \mathrm{Br}_{2}$	TS1	INT	TS2	Product (P)
$\mathrm{C} 1=\mathrm{C} 2$	1.351	1.379	1.478	1.505	1.513	1.532
C5 $=\mathrm{C} 6$	1.351	1.351	1.353	1.368	1.384	1.532
$\mathrm{Br}-\mathrm{Br}$	2.333	2.487	3.897	5.912	7.774	7.095
C1-Br	-	-	2.090	2.008	1.999	1.984
C5-Br	-	-	4.415	3.850	1.984	
C2-C6	2.763	2.754	2.682	2.256	1.562	
CC1C2C6	60.282	60.716	63.622	73.109	76.291	92.761

${ }^{\text {a }}$ Bond lengths are in \AA and angeles are in degrees. The numbers of the C atoms are shown in Scheme 2.

C2-C6 distance shortens. The distance between the bromide ion $\left(\mathrm{Br}^{-}\right)$, which is formed as a result of the lengthening of $\mathrm{Br}-\mathrm{Br}$ distance to $5.912 \AA$, and C 5 atom is $4.415 \AA$.

Starting from INT, the system can be easily activated to the second transition state (TS2), which leads to the final product. According to the calculation of the IRC of TS2 and the further optimization calculation of the IRC results, TS2 connects intermediate (INT) and product (P). The energy barrier of the third step is $5.442 \mathrm{kcal} \mathrm{mol}^{-1}$. It is obvious that from CT-complex across TS1 to INT, the second step along the reaction path, is rate limiting. The structure of INT is similar to that of TS2, with $\mathrm{R}_{\mathrm{C} 2-\mathrm{C} 6}$ further shortened (Scheme 2). During the transition of the system from INT to TS2, the decrease from 2.435 to $2.256 \AA$ in the C2-C6 distance proves that for TS2 the transannular interaction increases. One of the remarkable changes during the transition is the increase in the interaction between the C 5 atom and the bromide ion $\left(\mathrm{Br}^{-}\right)$and the decrease in the $\mathrm{C} 5-\mathrm{Br}$ distance $\left(\mathrm{R}_{\mathrm{C} 5-\mathrm{Br}}=\right.$ $3.850 \AA$). With the reaction going, the distances C2-C6 (INT: $2.435 \AA$, TS2: $2.256 \AA, \mathrm{P}: 1.562 \AA$) and the $\mathrm{C} 5-\mathrm{Br}$ (INT: $4.415 \AA, \mathrm{TS} 2: 3.885 \AA, \mathrm{P}: 1.984 \AA$) gradually shorten, the angle C 1 C 2 C 6 (INT: 73.109°, TS2: 76.291°, P : 92.761°) gradually increases and the C5-C6 bond (INT: $1.368 \AA$, TS2: $1.379 \AA, \mathrm{P}: 1.532 \AA$) gradually elongates, where finally the INT transforms into the product (P) via

Table 3 Total energies $\mathrm{E}_{\text {tot }}$ and relative energies E_{r} of various species involved in the reaction of Br_{2} with TCDD using B3LYP/6-311++G (d, p) level of theory

Species	$E_{\text {tot }}$ (hartree)	$\mathrm{E}_{\mathrm{r}}\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$
TCDD $+\mathrm{Br}_{2}$	-5615.217042	0.0
TCDD $\ldots \mathrm{Br}_{2}$	-5615.233173	-10.112
TS1	-5615.197562	12.224
INT	-6615.209006	5.042
TS2	-5615.200333	10.484
Product (P)	-5615.303292	-54.123

the transition state (TS2), with a low barrier of 5.442 kcal mol^{-1}. Thus, the intramolecular skeletal isomerisation of the INT into product (P) over TS2 is realized through the formation of C2-C6 bond over transannular cross-mechanism. In this step, $\mathrm{C} 5-\mathrm{Br}$ bond is also formed and $\mathrm{C} 5=\mathrm{C} 6$ double bond transforms into single bond. Since serious geometric changes occur in the system in this step of the reaction, remarkable energy change is realized (Fig. 2).

Hence, the reaction takes place through the formation of three bonds ($\mathrm{C} 1-\mathrm{Br}, \mathrm{C} 2-\mathrm{Br}$ and $\mathrm{C} 2-\mathrm{C} 6$), the splitting of one bond $(\mathrm{Br}-\mathrm{Br})$ and the transformation of two double bonds ($\mathrm{C} 1=\mathrm{C} 2$ and $\mathrm{C} 5=\mathrm{C} 6$) into single bonds. $\mathrm{C} 1-\mathrm{Br}$ bond is formed from TCDD.. Br_{2} to INT, $\mathrm{Br}-\mathrm{Br}$ bond breaks and the $\mathrm{C} 1=\mathrm{C} 2$ bond transforms into single bond and from INT to product $(\mathrm{P}), \mathrm{C} 2-\mathrm{C} 6$ and $\mathrm{C} 2-\mathrm{Br}$ bonds are formed and $\mathrm{C} 5=$ C6 bond transforms into single bond. During the course of the reaction, the change in the bond order for selected bonds is given in Table 4. The calculated bond order values also confirm that in the second step of the reaction, (from TCDD.. Br_{2} to INT), $\mathrm{C} 1-\mathrm{Br}$ bond is formed, $\mathrm{Br}-\mathrm{Br}$ bond breaks and $\mathrm{C} 5=\mathrm{C} 6$ bond transforms into a single bond. At the same time, according to the results of these calculations, in the third step of the reaction (from INT to product) C2$\mathrm{C} 6, \mathrm{C} 2-\mathrm{Br}$ bonds are formed and the $\mathrm{C} 5=\mathrm{C} 6$ bond transforms into C5-C6 bond.

The energy of the product (P) is $-54.123 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to the initial reactants (TCDD $+\mathrm{Br}_{2}$), the bromination is thermodynamically favored (Fig. 2). The N-type product was $18.011 \mathrm{kcal} \mathrm{mol}^{-1}$ [B3LYP/6-311++G $(\mathrm{d}, \mathrm{p})]$ more stable than the U-type product. The reaction is realized through the transannular cross (N-type) bonding of the double bonds (formation of C2-C6 bond) and formation of more stable skeletal structure. Therefore, the direction of the reaction is determined by the direction of the intramolecular skeletal isomerisation. The reaction progress is accompanied by shortening of C2-C6 distance along the reaction pathway, eventually resulting in bond formation and [from $\mathrm{TCDD}+\mathrm{Br}_{2}$ to product (P)] C1C2C6 angle gradually increases (Fig. 2).

Table 4 Bond order of selected bonds of the TCDD- Br_{2} stationary points ${ }^{\mathrm{a}}$

Bond	TCDD $+\mathrm{Br}_{2}$	TCDD $\ldots \mathrm{Br}_{2}$	TS1	INT	TS2	Product (P)
$\mathrm{C} 1=\mathrm{C} 2$	1.854	1.707	1.022	0.995	0.978	0.956
$\mathrm{C} 5=\mathrm{C} 6$	1.854	1.853	1.852	1.744	1.494	0.956
$\mathrm{Br}-\mathrm{Br}$	1.000	-	0.856	0.075	0.029	0.0
C1-Br	-	-	-	0.912	0.927	0.0
C5-Br	-	0.002	0.007	0.007	0.949	
C2-C6			0.055	0.216	0.940	

${ }^{\text {a }}$ The numbers of the C atoms are shown in Scheme 2.

Conclusions

The bromination of tricyclo[4.2.2.2 $2^{2,5}$ dodeca-1,5-diene is a typical electrophilic transannular addition reaction. The present reaction pathway can be divided into three steps. First, the exothermic formation of reactive, essential $1: 1$ TCDD... Br_{2} molecular CT-complex, for which the stabilization energy is $10.112 \mathrm{kcal} \mathrm{mol}^{-1}$. Second, the prereactive CT-complex is activated to an intermediate (INT) $15.154 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy, the barrier of the ratelimiting step is $22.336 \mathrm{kcal} \mathrm{mol}^{-1}$. Third, the intermediate
(INT) transforms into the final product (P) with a barrier of $5.442 \mathrm{kcal} \mathrm{mol}^{-1}$. Accompanying the $\mathrm{C} 1-\mathrm{Br}$ bond formation, $\mathrm{Br}-\mathrm{Br}$ bond splits and $\mathrm{C} 1=\mathrm{C} 2$ bond transforms into $\mathrm{C} 1-\mathrm{C} 2$ in the second step and C2-C6, C2-Br bonds are formed and C5 = C6 bond transforms into C5-C6 bond in the third step. The direction of the reaction pathway is determined by the direction of the intramolecular skeletal isomerisation. The reaction is realized so as to follow the direction where transannular cross (N-type) bonding of double bonds (formation of C2-C6 bond) occur and a more stable skeletal structure (N -type product) is obtained.

Fig. 2 Potential energy profile along the minimal energy pathway for the stepwise mechanisms of the electrophilic transannular addition reaction of bromine to TCDD. The energy values are given in $\mathrm{kcal} \mathrm{mol}^{-1}$ at B3LYP/6311++G(d,p) level. Bond lengths are in \AA and angles are in degrees

References

1. Osawa E, Aigami K, Inamoto Y (1978) Tetrahedron 34:509-515. doi:10.1016/0040-4020(78)80044-1
2. Lin CT, Wang NJ, Yeh YL, Chou TC (1995) Tetrahedron 51:2907-2928. doi:10.1016/0040-4020(95)00041-6
3. Lin CT, Wang NJ, Tseng HZ, Chou TC (1997) J Org Chem 62:4857-4861. doi:10.1021/jo970299c
4. Lin CT, Hsu HC, Chou TC (1999) J Org Chem 64:7260-7264. doi:10.1021/jo990569 m
5. Soloway SB, Damiana AM, Sim JW, Bluestone H, Lidov RE (1960) J Am Chem Soc 82:5377-5385. doi:10.1021/ja01505a024
6. Franz HJ, Hobold W, Hohn R, Muller-Hagen G, Muller R, Pritzkow R et al. (1970) J Prakt Chem 320:622-634. doi:10.1002/ prac. 19703120412
7. Sasaki T, Kanematsu K, Kondo A (1974) J Org Chem 39:2247-2251
8. Haufe G, Kleinpeter E, Muhlstadt M, Graefe J (1978) Monatshefte f. Chem (Kyoto) 109:575-585
9. Matturro MG, Adams RD, Wiberg KB (1981) Chem Commun 17:878-879
10. Uemura S, Fukuzawa S, Toshimitsu A, Masaya O (1983) J Org Chem 48:270-273. doi:10.1021/jo00150a029
11. Wiberg KB, Matturro MG, Okarma PJ, Jason ME (1984) J Am Chem Soc 6:2194-2200. doi:10.1021/ja00319a047
12. Wiberg KB, Adams RD, Okarma PJ, Matturro MG, Segmıller B (1984) J Am Chem 6. Soc 6:2200-2206
13. Kimura M, Morossawa S (1985) J Org Chem 50:1532-1534. doi:10.1021/jo00209a035
14. Shea KJ, Greeley AC, Nguyen S, Beauchamp PD, Aue DH, Witzeman JS (1986) J Am C Chem Soc 108:5901-5908. doi:10.1021/ja00279a040
15. Haufe G, Alvernhe G, Laurent A (1986) Tetrahedron Lett :4449 4452. doi:10.1016/S0040-4039(00)84975-8
16. Murty BARC, Pinkos R, Spurr PR, Fessner WD, Lutz G, Fritz H et al. (1992) Chem Ber 125:1719-1739. doi:10.1002/cber. 19921250728
17. Pinkos R, Melder JP, Weber K, Hunkler D, Prinzbach H (1993) J Am Chem Soc 115:7173-7191. doi:10.1021/ja00069a015
18. Herges R, Neumann H (1995) Liebigs Ann :1283-1289. doi:10.1002/jlac. 1995199507170
19. Robinson RE, Myers DY (1999) Tetrahedron Lett :1099-1100. doi:10.1016/S0040-4039(98)02643-4
20. Günbas DD, Algı F, Hökelek T, Watson WH, Balcı M (2005) Tetrahedron 61:11177-11183. doi:10.1016/j.tet.2005.09.019
21. Inagaki S, Fujimoto H, Fukui K (1976) J Am Chem Soc 98:40544061. doi:10.1021/ja00430a006
22. Belluci G, Chiappe C, Bianchini R, Lenoir D, Herges RJ (1995) J Am Chem Soc 117:12001-12002. doi:10.1021/ja00153a025
23. Herges R (1995) Angew Chem Int Ed Engl 34:51-53. doi:10.1002/anie. 199500511
24. Ruiz E, Dennis R, Salahub R, Vela A (1996) J Phys Chem 100:12265-12276. doi:10.1021/jp9533077
25. Brown RS (1997) Acc Chem Res 30(3):131-137. doi:10.1021/ ar960088e
26. Bianchini R, Chiappe C, Lenoir D, Lemmen P, Herges R, Grunenberg J (1997) Angew Chem Int Ed Engl 36:1284-1287. doi:10.1002/anie. 199712841
27. Smith WB (1998) J Org Chem 63:2661-2664. doi:10.1021/jo9722459
28. Bianchini R, Chiappe C, Moro LG, Lenoir D, Lemmen P, Goldberg N (1999) Chem Eur J 5:1570-1580. doi:10.1002/(SICI)1521-3765 (19990503)5:5<1570::AID-CHEM1570>3.0.CO;2-A
29. Chiappe C, Rubertis AD, Lemmen P, Lenoir D (2000) J Org Chem 65:1273-1279. doi:10.1021/jo9910076
30. Chiappe C, Rubertis AD, Detert H, Lenoir D, Wannere C, Schleyer RP (2002) Chem Eur J J 8:967-978. doi:10.1002/1521-3765(20020215)8:4<967::AID-CHEM967>3.0.CO;2-I
31. Rathere R, Lindeman SV, Zhu CJ, Mori T, Schleyer RP, Kochi JK (2002) J Org Chem 67:5106-5116. doi:10.1021/jo0200724
32. Lenoir D, Chiappe C (2003) Chem Eur J 9:1037-1044. doi:10.1002/chem. 200390097
33. Chiappe C, Detert H, Lenoir D, Pomelli CS, Ruasse MF (2003) J Am Chem Soc 125:2864-2865. doi:10.1021/ja027630 g
34. Herges R, Papafflippopoulos A, Hess K, Chiappe C, Lenoir D, Detert H (2005) Angew Chem Int Ed 44:1412-1416. doi:10.1002/ anie. 200461632
35. Chiappe C, Pomelli CS, Lenoir D, Wattenbach C (2006) J Mol Model 12:631-639. doi:10.1007/s00894-005-0038-2
36. Wang SC, Tantillo DJ (2006) Eur J Org Chem 738-745. doi:10.1002/ejoc. 200500742
37. Balcı M, Güney M, Daştan A, Azizoglu A (2007) J Org Chem 72:4756-4762. doi:10.1021/jo070253b
38. Abbasoglu R (2004) J Mol Struct THEOCHEM 686:1-5. doi:10.1016/j.theochem.2004.06.054, and references therein
39. Abbasoglu R, Yilmaz S, Gök Y (2005) Indian J Chem 44A:221226
40. Abbasoglu R, Yilmaz S (2006) J Mol Model 12:290-296. doi:10.1007/s00894-005-0031-9
41. Abbasoglu R (2006) J Mol Model 12:991-995. doi:10.1007/ s00894-006-0113-3
42. Abbasoglu R (2007) J Mol Model 13:425-430. doi:10.1007/ s00894-006-0161-8
43. Abbasoglu R (2007) J Mol Model 13:1215-1220. doi:10.1007/ s00894-007-0236-1
44. Abbasoglu R, Uygur Y (2007) Indian J Chem 46A:396-400
45. Abbasoglu R, Magerramov A (2007) Acta Chim Slov 54:882-887
46. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785-789. doi:10.1103/PhysRevB.37.785
47. Becke AD (1993) J Chem Phys 98:5648-5652. doi:10.1063/ 1.464913
48. Perdew JP, Wang Y (1992) Phys Rev B 45:244-249. doi:10.1103/ PhysRevB.45.13244
49. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650-654. doi:10.1063/1.438955
50. Page M, Mclver JW Jr (1988) J Chem Phys 88:922-935. doi:10.1063/1.454172
51. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154-2161. doi:10.1063/1.456010
52. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523-5527. doi:10.1021/j100377a021
53. Borden WT (1989) Chem Rev 89:1095-1109. doi:10.1021/ cr00095a008
54. Ermer O, Bell P, Mason SA (1989) Angew Chem Int Ed Engl 28:1239-1241. doi:10.1002/anie. 198912391
55. Margtic D, Williams VR, Warrener R (2003) J Org Chem 68:9186-9190. doi:10.1021/jo035110d
56. Vazquez S, Camps P (2005) Tetrahedron 61:5147-5208. doi:10.1016/j.tet.2005.02.007
57. Hoffmann R, Imamura A, Hehre WJ (1968) J Am Chem Soc 90:1499-1509. doi:10.1021/ja01008a018
58. Hoffmann R (1971) Acc Chem Res 4:1-9. doi:10.1021/ ar50037a001
59. Watson WH (1983) Stereochemistry and reactivity of systems containing π electrons. Verlag Chemie International, Deerfield beach, Florida
60. Camps P, Perez F, Vazquez S (1997) Tetrahedron 53:9727-9734. doi:10.1016/S0040-4020(97)00595-4

[^0]: ${ }^{1}$ Submitted in honor of the 75th birthday of Professor Nikolay F. Stepanov (Moscow State University), our teacher, colleague, and friend.
 R. Abbasoglu (\boxtimes)

 Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Turkey
 e-mail: rabbas@ktu.edu.tr

[^1]: ${ }^{\text {a }} \Delta \varepsilon=\varepsilon_{\text {НОМО }}-\varepsilon_{\text {НОМО-1 }}$ energy gap

